Acta Crystallographica Section E

Structure Reports

Online

N^{\prime}-(2,3-Dimethoxybenzylidene)-5-methyl-1-phenyl-1H-pyrazole-4-carbohydrazide

ISSN 1600-5368

Shu-Wen Wang, ${ }^{\text {a }}$ Li-Rong Wen ${ }^{\text {a }}$ * and Yan-Fang Miao ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\mathbf{b}}$ QingDao Radio and Television University, Qingdao 266012, People's Republic of China

Correspondence e-mail: wenlirong@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.053$
$w R$ factor $=0.149$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The crystal packing of the title compound, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$, is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions.

Comment

As special Schiff bases, acylhydrazones have been extensively investigated because of their strong tendency to chelate transition metals (Naskar et al., 2004) and their pharmacological applications (Sreekanth et al., 2004). A number of acylhydrazones and their transition metal complexes have been reported to inhibit biological activity and have been used as anti-inflammatory, sterilization and antitumour agents (BuuHoi et al., 1953). In this paper, we report the crystal structure of the title acylhydrazone derivative, (I), which was obtained by reaction of pyrazolylhydrazide with dimethoxybenzaldehyde.

(I)

Bond lengths and angles in (I) are as expected for this type of compound. The pyrazole ring is planar, with a maximum deviation of 0.012 (3) \AA for atom N1, and forms a dihedral angle of $64.80(12)^{\circ}$ with the plane of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring. The carbonyl group is synperiplanar to the pyrazole ring double bond with a $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{O} 1$ torsion angle of 10.9 (7) ${ }^{\circ}$.

In the crystal structure, molecules are linked into centrosymmetric dimers through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1), which form six-membered rings. In addition, the crystal packing is stabilized by weak intermolecular C $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1 and Fig. 2) and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions [C5-H5 $\cdots \mathrm{Cg} 1^{\mathrm{iii}}=2.71 \AA$; $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 2^{\text {iv }}=$ $2.94 \AA ; C g 1$ and $C g 2$ are the centroids of the C13-C18 and C1C6 benzene rings, respectively; symmetry codes: (iii) $1-x$, $\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $\left.-x,-\frac{1}{2}+y, \frac{1}{2}+z\right]$.

Experimental

A mixture of 5-methyl-1-phenyl-4-pyrazolhydrazide (2 mmol), synthesized according to the literature method (Li et al., 2004), 2,3dimethyloxybenzaldehyde (2 mmol) and anhydrous ethanol (10 ml) was stirred in a 100 ml flask for 4 h at room temperature. The

Received 27 June 2006 Accepted 18 July 2006

Figure 1
The molecular structure of the title compound, with 35% probability displacement ellipsoids.

Figure 2
The molecular packing of the title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
progress of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was filtered to obtain the crude product. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 461 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=364.40$
Monoclinic, $P 2_{1} / c$
$a=6.962(2) \AA$
$b=16.343(5) \AA$
$c=16.934(5) \AA$
$\beta=101.803(6)^{\circ}$
$V=1886.0(10) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.973, T_{\text {max }}=0.983$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053
$$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0529 P)^{2}\right.
$$

$w R\left(F^{2}\right)=0.149$
$S=0.99$
3330 reflections
251 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.91(4)$	$1.93(4)$	$2.841(4)$	$175(4)$
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.93	2.57	$3.499(6)$	176

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

The H atom attached to N 3 was located in a difference Fourier synthesis and its positional parameters were refined, with the $\mathrm{N}-\mathrm{H}$ distance restrained to 0.91 (2) Å. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and included in the final cycles of refinement using a riding model. The isotropic displacement parameters of all H atoms were fixed at 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 20572057) and the Natural Science Foundation of Shandong Province (grant No. Y2003B01)

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoi, N. P., Huong, N. D., Ham, N. H., Binon, F. \& Royer, R. (1953). J. Chem. Soc. pp. 1358-1364.
Li, M., Wen, L. R., Jing, S. X., Zhao, G. L. \& Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 366-370.
Naskar, S., Biswas, S., Mishra, D., Ahikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. \& Chattopadhyay, S. K. (2004). Inorg. Chim. Acta, 357, 4257-4264.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sreekanth, A., Kala, U. L., Nayar, C. R. \& Prathapachandra Kurup, M. R. (2004). Polyhedron, 23, 41-47.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

